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THEORETICAL STUDY OF LASER-INDUCED SURFACE EXCITATIONS ON A GRATING

Ki-Tung Lee and Thomas F. George

Department of Chemistr$
University of Rochester
Rochester, New York 14627

Laser-Induced surface excitations on a grating are studied in terns of the

solutions to Maxwell's equations. A rigorous theory, derived originally for a

lamellar grating, is used to study the resonance phenomenon for deep gratings.

The generalization of the square-well grating to gratings of arbitrary shapes is

examined numerically. A new diffraction anomaly is seen to occur when the grating

depth is approximately equal to half of the wavelength of the incident laser radi-

ation.
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I. Introduction

It has been well established that impinging light on a rough metallic surface

may lead to resonant excitation of surface plasma oscillations, which play an

important role in interesting surface phenomena, such as surface-enhanced Raman

scattering1, 2 and laser-induced periodic pattern deposition.3 In particular,

the spatial oscillation of photochemically deposited metal films is identified

as the fingerprint of the oscillation of a surface plasma wave (SPW). These

surface waves are related or similar to those found in Wood's anomalies 4 ' 5 or

Brewster's waves, 6 which all satisfy the same mathematical equation but with media

of different electric properties. Moreover, all these waves have the same charac-

teristics in that they propagate along the surface of a dielectric medium, with

amplitudes decaying exponentially with increasing distance from the surface into

the dielectrics and into the vacuum in contact with it. In the second quantiza-

tion terminology, these surface waves are labelled as surface polaritons. Resonant

excitation of these quasistationary modes can lead to orders of magnitude of en-

hancement of molecular processes occurring near or on the surface. (It has been

suggested by Tsang and Kirtley7 and later by Mill and Weber8 that the maximum

value of electric fields near gratings may be limited by grating-induced radiative

damping.) Thus, a detailed understanding of the formation and the properties of

these surface waves would be helpful in better understanding and controlling surface

- molecular rate processes and diagnosis of the properties of surfaces. (A compre-

hensive review of the diagnosis of surface properties can be found in Reference 9.)

A general understanding of the physical properties of these surface waves has
S5

been reviewed by Fano, and recent advances in research, both theoretiCally and

experimentally, have been reviewed by Agranovich and Mills. 10 These quasistationary

modes are controlled by the following elements:
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a) the wavelength of the incident radiation,

b) the angle of incidence,

c) the geometry of the surface roughness,

d) the electric properties of the surface,

e) the polarization.

One approach to the theory of surface plasma oscillations has been in term

of the collective motion of electrons in the solid. 11 It has been found, however,

that the problem of resonant excitation of SPW can be treated more easily as an

optical problem than as the collective motion of the electrons. In fact, both the

problems of surface-enhanced Raman scattering12 and laser-induced pattern deposition3

have been examined by Rayleigh's perturbative diffraction theory.
13

The formation of these evanescent waves originates a momentum transfer from

the grating (roughness) to the impinging waves. Since the frequency of the impinging

laser radiation is unaffected by the roughness, the modulus of the momentum of any

wave must equal the one in the vacuum. Thus, momentum transfer by the roughness

can only change the direction of momentum. This means that when the tangential

component of the momentum of the diffractive wave,

kmt kt + m (1)

where kt is the tangential component of the incident wave, d is the spacing of the

grating and m is an integer, is larger than the modulus of the incident momentum,

kO, then the normal component of the diffractive wave,

kn a (k- k2t) 1/,

. becomes imaginary. This corresponds to evanescent waves travelling with momentum

kmt along the surface and exponentially damped in the normal direction. Moreover,

if the geometry is chosen so certain kinematical conditions are met, the incident

photon will resonantly couple to these surface polaritons.
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The effect of the grating depth on the resonant conditions has been studied

recently by Garcia 14 and Neviere and Reinlsch. 15  While Garcia found that the

* intensities of the reflectivity and the diffraction beams have their minimum at

resonance, but that the reflectivity becomes a maximum for a particular value of

the grating depth, Neviere and Reinlsch 15 pointed out that there exists an optimum

value of the grating depth for which the electromagnetic (EM) resonance contribution

to the enhancement of the nonlinear optical process is the greatest, and the optimi-

zation is achieved with very shallow modulation. More recently, Glass, Weber and

Mills, 16utilizing the extinction theorem of Toigo, Marvin, Hill and Celli, 17

studied the grating-induced radiative damping of the surface polariton for grating

* profiles with various shapes and depths, and compared the results with those

of perturbation theory. Good agreement was found for those systems investigated.

All of the calculations mentioned above fall in the regime that the grating ampli-

tude is much smaller than the incident wavelength. In this paper, we employ the

square-well grating theory of Sheng, Stepleman and Sandra, 18 which is based on the

formalism of a stratified medium,19 to study a new kind of resonance condition for

a grating depth comparable to the incident wavelength.

Recently, various numerical techniques 20have been developed for the solution
of diffraction problems. Although most of these are rigorous in formulation, they

exhibit various degrees of effectiveness in actual calculations. Very often

numerical difficulties are found either when the grating depth becomes too large 21

or when the conductivity of the grating is large. 20The square-well grating approach13

has been demonstrated to be numerically stable even in the regime of good conductivity

and also to work well for the case of a deep grating. However, the method is

restricted to a lamellar grating. We have suggested a generalization of the

square-well grating theory to gratings of arbitrary shape.22 In this paper, the
numerical applicability of this generalized theory is examined. The diffraction
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from gratings of arbitrary shape has attracted a lot of attention recently.

Moharan and Gaylord have applied their coupled-wave theory23 to a multilayered

grating formalism,24 while Suratteau, Cadilhac and Petit 25 formulated a

Multi-Step Lamellar Grating" (MSLG) method by extending the work of

Botten and coworkers. 26 The MSLG method, which has only been applied to

lossless dielectrics, is believed to be closely related to the present work.

In Section II, the theory of the square-well grating and its generalization

to a multilayered grating is briefly reviewed. The results and discussion

are given in Section 1II, and a summary is presented in Section IV.

4f

4.
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II. Theory

A. Square-Well Grating

The square-well grating formalism is based on a stratified medium model,17

and a detailed account of the derivation can be found in a paper by Sheng et al. 16

Our main purpose in this part of Section I is to set up the notation for the

generalization of the square-well grating to a multilayered grating.

Following Rayleigh's approach, the entire space is separated into three

regions: the vacuum region (Region 1), the dielectric region (Region III) and the

corrugation region (Region II). The geometry and the coordinate system of the

lamellar grating are shown in Fig. 1. In Regions I and III, the EM fields are

expressed in terms of Rayleigh waves,

T - exp[1k0(sinetx - coseiz)] nRa exp{Iko(ynx+ (1-YnP/z11. (2)

and
em

T~l I T expiko[Xnx - (-y2)1/21z]. (3)

na-m n ~A~~Ln~(~n) z.

For p-wave scattering, I is the y-component of the magnetic vector, k0 . 2w/A

is the free-space wave vector of the Incident laser radiation, e is the dielectric

constant of the grating, Rn and Tn are the amplitudes of the n-th reflected and

transmitted diffracted orders, et is the angle of incidence, and

Yn asin ei + nX/d, (4)

I-
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where d is the period of the grating. (The square root with positive imaginary

part will always be chosen in this paper.) The field in Region 11 satisfies16

a 2y V 2 11 2II a 2 1 2 11 ay
+ + c(x)kY u x L nEW] (5)

W axd

where c(x) a e for ix-ndl:rd/2, and 1 otherwise (r is a number between 0 and 1).

At this stage, the problem becomes identical to that of a periodically stratified medi

with a piecewise constant E. 17 Thus, the field in Region 11 can be expressed in gener

as !I " X (x)[A exp(iA z) + Bexp(-iAtz)], (6)

2where At are the eigenvalues satisfying the transcendental equation

1, at at

cos(kod sine1 ) + cos(Brd)cos[zt(l-r)d] + 1 ctF--

x sin(BIrd) sin[a L (1-r)d]- 0, (7)

and the associated eigenfunctions. X,(x) are given by

cos[($(x+-i)] + tVo sin[ Cx+)d x _.

x (x) (8)

U cos[at(x-- )] + iVL :20sin[ (x-j)J, - <x(1- )d
t2

where X (-rd/2) is normalized to 1, with

V [exp(ik0 d sine1 ) - MtJ]/Nf, (9)

Vt" -i ln~rd) + V0 coslOrd), (10)

U - sin( rd) +t (

SCOOL nrd) + WV - sin(strd), (11)
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M, = cos(BOrd) cos[a (1-r)d] - - sinfca,(1-r)d] sln(BLrd), (12)

No = iko[ cos(02. rd) sln[c,(1-r)dJ + -L sin(,rd) cos[ca2(l-r)dc, (13)

= (ko 2 )/ 2  (14)

'2 '21/2)
9= (eko - Aj)I/. (15)

The remaining task is to determine the expansion coefficients, Rn , Tnt

A and BV, by matching the analytic solutions of Maxwell's equations at the

boundaries; namely, the continuity of tangential E and H fields at z= 0 and

z= -h. This gives four simultaneous equations which are valid for all x:

I exp(ikoYnxj)((6nO- Rn) =X(xj)(A9+ BI), (16)
n In

YX2,(xj)[A .exp(-iA. h) + B2exp(it2 h)] =

' exp{iko[YnX.+ (-Y2 )1/2 h}Tn (17)
n j n n

- iko[cosei6nO + (1-Y2)
1/2 exp(ikoYnXj)J =

n

XX
i C - (xj)A,[A, - B.] (18)

£ iAX[A.exp(-iA .h) - Bexp(iAhh)] -

1!-ik(-Y 2  (.y n)l/ 2 h}. (19)SA k(-n) Tn exp xj+ koFn -

Employing the point matching method, we can rewrite Eqs. (16) - (19) in matrix

notation as

(D- R) - - X (A+ B), (20)
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r-1 X(E A + Z-1B) -T,(21)

-nI(R+ D) r- r1 (A- B), (22)
- - - & f-- -

r-1n( 1B a - T (23

where

=j exp(ikO'Ynx.), (24)

=i X L(xi). (25)

Q =kxtx) (26)

=j exp(-iA~h)6i,,, (27)

kI~ k(,_112)'6, (28)

A= exp[iko(E--y,) 1 /2h]6~~ (29)

*~n r-(y) / (33)

T in mnatrix form as

(O - (E- ) +n) (31)
wi th

e*-{r%+l r xqr- + (rQ-cr 1x)zE 1n- ri -1
VS a a;

x ~rI i .c-x.. -am s -& 1x~ 1I -r(2
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and
T = 24' 1K'1x'Ir(D- R), (33)

where

K = Z'1(X r-1 ' )f1  + z(x-1r+i1 Ir). (34)

For h= 0, both Z and A reduce to identity matrices. In this case, 0 becomes

- F, which directly implies

R = (C+11) I (-n)D (35)

and

T = D - R, (36)

which are the correct expressions for flat surfaces. In the case of a very deep

grating, h- -, and for A with an imaginary part of any size, Z then 0 can

be reduced to a simple form, -RX- , and the partial field AT goes to zero. The

resonant excitation conditions are given mathematically by the zero's of the expres-

sion (E)+n)-I (0-) and physically are governed by the five parameters given in Sec-

tion I. Although these parameters have different degrees of importance in the

control of the resonant excitation of the surface plasma oscillations, one can,

with appropriate choice of these five parameters, engineer some interesting sur-

face phenomena. Here, we focus on how the depth of the square-well grating may

introduce such phenomena.

B. Multilayered Grating

We now extend the square-well grating formalism to a multilayered grating

theory which can model gratings of arbitrary shape. This involves the extension

of the concept of a periodic stratified medium to a two-dimensional scheme. A

schematic diagram of the multilayered grating is illustrated in Fig. 2, where
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Region II is divided into subregions. In each subregion, the electromagnetic

field is expressed as in Eq.(6),

m = EX (x)[Amexp(iAiz) + B3,exp(-1A Z)], (37)Tm k=

where m is the layer index. The characteristic equation of each layer is the same

as Eq. (7). However, layers differ from each other by different values of r, which

is a measure of the amount of metal within a grating period. Following the method-

ology of the square-well grating, we match the fields at the boundaries of each

region and subregion. Hence, we have

-Xo(0 + Bo ) = D - R, (38)
Z -0-l

rX(zn A + n+ B AT, (39). n nW ,n n n=~-

r1"-1 (A B) = -T[(D+R), (40)

* "1 B ) = - AT (41)
'ln (=n,n+IOn-2n,n+ln (41)

X (Z Am_,~ f~l Z_ I (43)Xm-l (mlmm_ - m B,mm1) =Xm+l - mmAm+ ll Bm)  (42)

, ~ ~ ~ ~ ( ~ -( -~ Am- , ml ~1) = l(Em'mA - E,.-..£m"Bm) ,(43)

with m = 1, ... n, and the grating has n+l layers with a thickness of h. The

elements of the E matrix are given as

U z exp(-iuv h) 6pq (44)
tu'v p,q p

All other matrices are defined as in Part A but with a subregion index. It is

trivial to generalize the formalism to treat a different thickness for each layer.

For simplicity, we choose each layer to have the same thickness.

"=I1\M d~



In order to find expressions for R and T, we construct the two 
supermatrix

equations,

I R) (45)

r-go - -11 B0  -(D+R

and

n : -i l n: -1  AT
BXln.n+ -'n-nn+,)B n  (46)

where for simplicity we have dropped the matrix notation. We notice that the A's

and B's are related by the recursive relationship

.. - -- I - - - -1( 7,...,..\An" x'..,.. : x x. E__1  .

/~ n n-in-

Hence,~ )~f~l;f~l n "n-i1 n-i n n - n- 1 n/ n.

Hence, we have

An' = b (A ) 
(48)

where

a/b ZXI 1,- ' X Z-
n- 

n-~

c dni nn nn n-

1'n l,n-l n Xn-2n-2,n-2En2,n

. knl,n-l -n..: (l: :Zn!ln:::.2,n.1  -lfn2En2,n.l

xXo x X-o
X .. (49)

1 o ,1 ; -01, %oo

Substituting Eqs. (46)and (48) into (45), we have

Ni
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M N n (D +R) &AT

where

M N Tr l , ~ . ot;,+

a b\ /x;' r a;'1
XI -1 - - -1 '

The expressions for R and T are then given as

R = {(&K + M) + (fL + N)R)}1'{(&K + M) - (CL + N)fl}D (52)

and

T - AI (L"1 + N'I ;)-(L'IK - N'IM)(D - R). (53)

Equations (52) and (53) are now all we require to calculate the fields at the peaks

and troughs of the grating.

III. Results and Discussion

A. Square-Well Grating

Numrical calculations have been carried out for a diffraction system with an

incident wavelength of A a 6471 A, a grating periodicity of d a 1 um, and the incident

angle fixed perpendicular to the grating surface. Under this configuration, the

(first-order) perturbation theory predicts no resonant excitation. The diffraction

amplitudes are computed as a function of the groove depth for a silver grating with the

dielectric constant, e - -17.42 + 0.581, chosen to fit experimental data.18 Results

are plotted in Fig. 3 for the three lowest diffraction orders. Since the
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angle of emergence for R2 is complex, R2 is a surface wave. As shown in Fig. 3, for

a ratio of the grating amplitude to the period of 0.283, the reflected beam is at

its minimum, while the first- and second-order diffraction beams are at their maxima.

To understand this behavior, one can draw an analogy to resonant scattering

theory, in particular, the bound-continuum interaction problem, 27 where a quasibound

state plays the role as a coupling between the bound state and the continuum states.

At the resonant energy, an Interference structure, which is due to a competition

between two equally possible pathways, occurs in the cross section. In the present

case, the grating roughness serves as the coupling between the incident wave and the

surface waves. At an optimum depth, the incident wave couples strongly with the

surface waves. Thus, the resonance occurs. Moreover, the direct anI indirect dif-
fraction channels interfere each other and construct the Fano-type interference

structure in the first-order diffraction beam. The resonance arises when the cavity

(the groove) has a depth of approximately half of the incident wavelength, which is

analogous to the case of acoustic resonances in an open-ended organ pipe occurring

when (n+)X equals the length of the pipe, where n is an Integer. In the present case,

we believe that the deviation from precisely a half is partially due to the fact that

the delectric constant of the Ag grating has a finite nonzero imaginary part, such

that the damping mechanism leads to a width as well as a shift in the resonant

condition.28 A calculation similar to the one of Glass, Weber and Mil1 16 would be

helpful to further understand these frequency shifts and damping rates, which is

being carried out in our laboratory. As far as we know, this Fano-type Interference

resonance phenomenon by diffraction from a grating has never been reported before.

B. Layered Grating

In this part, we discuss the numerical applicability of the formalism derived

in Part B of Section II. We test the formalism by separating the square-well

grating into a fictitious layered grating, as shown in Fig. 4. We then apply the

inultilayered grating formalism to this fictitious layered grating for four and ten
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layers. Numerical results are compared with those of the square-well grating in

Table I for the first three orders of diffraction beams at various grating depth.

First, the results for four layers arealmost identical with those for ten layers.

This implies that the method is stable for a multilayered configuration, which is

important for modeling gratings of different shapes. Second, the layered grating

results are, in general, in good agreement with the square-well grating results,

except near resonance, especially when the numbers are small. We believe this

discrepancy is due to the degree of accuracy of the matrix inversion, since in the

layered grating formalism one needs to invert matrices which are twice the size of

those in the square-well grating approach. These matrices appear to become singular

whenever the scattering is at resonance. Moreover, we find that the expression for

Tn, Eq. (53), is unstable, especially when the grating amplitude is large. This also

occurs in the square-well case when Tn takes the form of Eq. (53). A more stable

* expression might be achieved by first evaluating the A and B coefficients.

We now turn to a calculation on a three-layered grating. The surface profile

has a structure somewhat between a sawtooth grating and a sinusoidal grating, as

shown in Fig. 2c. We have calculated the average field at the peak and at the

trough of the grating as a function of the grating depth, with the same scattering para-

meters as above and with values of r (see Fig. 1) as 0.1, 0.3 and 0.5. The results are

presented in Table II. We find that Tn begins to exhibit unstable behavior as the ratio

of the grating amplitude to the period reaches 0.2. Otherwise, both fields are con-

vergent and stable.

The difficulties in this layered grating approach arise from the evaluation

of the nonlinear eigenvalues of Eq.4(7). As mentioned by Sheng et al, 18 eigenfunc-

tions whose elgenvalues form complex conjugate pairs should not be separated. While

truncation of the matrices is inevitable and the number of eigenfunctions used for

each layer should be equal, a tremendous amount of manual labor and computer time

are required to match these two criteria. This is a potential problem in modelling

a realistic profile.
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IV. Summary

A new diffraction anomaly is seen to occur when the grating amplitude is approxi-

mately equal to half of the incident wavelength. When the resonance condition is

met, the radiated energy (the scattered light) changes its "preferred" direction,

and at the same time surface waves are excited.

A new multilayered grating method has been formulated to model grating pro-

files of arbitrary shape. The field at the peak remains stable as the grating depth

increases, while the field at the trough (inside the metal) does not. Difficulties

are found in choosing an optimum basis set. A supercomputer would be helpful for

applying this multilayered grating formalism to model specific surface profiles.
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4* Table I

The diffraction amplitudes of the first three orders for different numbers of

layers in the square-well grating and for different ratios of the amplitude to

the period.

# layers

h/d 1 4 10

.10 .9712 .9739 .9739
IR01 .20 .9551 .9588 .9588

.28 .2367 .1969 .1969

.10 .1744 .1567 .1567
JR11 .20 .2298 .2110 .2110

.28 .8551 .8478 .8478

.10 .0251 .0310 .0310
IR 2 1 .20 .0411 .0430 .0430

.28 .2775 .2055 .2054



Table 11

The average field intensity at the peak and at the trough, as

a function of the ratio of the grating amplitude to the period, for

a three-layered grating with a profile as described in Fig. 2c.

h/d IV12 peak 1112 trough

.003 1.020 .137

.006 1.057 .923(-1)

.009 1.089 .646(-1)

.012 1.117 .469 -1)

.015 1.114 .352 -1)

.018 1.168 .270 -1)

.021 1.191 .212 -1)

.024 1.211 .170 -1)
.027 1.230 .139 -1)
.030 1.248 .1151-1)
.060 1.363 .288(-2)
.090 1.419 .112(-2)
.120 1.452 SM15-2)
.150 1.473 .250(-3)
.180 1.491 .120(-3
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Figure Captions

1. Geometry and coordinate system for a p-wave incident on a square-well grating.

2. (l Sinusoidal grating. The hatched area represents the metal.
b Square-well grating showing a separation Into three layers, one of which

is periodic in the x-direction and two of which are uniform.
(c) Generalization of the square-well grating in which there are three periodic

layers.

3. (a) The magnitudes of the zeroth- and second-order diffraction amplitudes lotted
as a function of the ratio of the amplitude to the period (d a 1000 nm.

(b) The magnitude of the first-order amplitude plotted as a function of the ratio
of the amplitude to the period (d a 1000 m), with r - 0.5

4. Schematic diagram for a fictitious square-well layered grating.
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